Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Variational Graph Embedding and Clustering with Laplacian Eigenmaps

Zitai Chen'?, Chuan Chen'?*, Zong Zhang', Zibin Zheng"? and Qingsong Zou'?
School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion, School of
Communication and Design, Sun Yat-sen University, Guangzhou, China

3Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou,
China
{chenzt25,zhangz7 } @mail2.sysu.edu.cn, {chenchuan,zhzibin,mcszqs } @mail.sysu.edu.cn

Abstract

As a fundamental machine learning problem, graph
clustering has facilitated various real-world appli-
cations, and tremendous efforts had been devoted to
it in the past few decades. However, most of the ex-
isting methods like spectral clustering suffer from
the sparsity, scalability, robustness and handling
high dimensional raw information in clustering. To
address this issue, we propose a deep probabilis-
tic model, called Variational Graph Embedding and
Clustering with Laplacian Eigenmaps (VGECLE),
which learns node embeddings and assigns node
clusters simultaneously. It represents each node
as a Gaussian distribution to disentangle the true
embedding position and the uncertainty from the
graph. With a Mixture of Gaussian (MoG) prior,
VGECLE is capable of learning an interpretable
clustering by the variational inference and genera-
tive process. In order to learn the pairwise relation-
ships better, we propose a Teacher-Student mech-
anism encouraging node to learn a better Gaussian
from its instant neighbors in the stochastic gradient
descent (SGD) training fashion. By optimizing the
graph embedding and the graph clustering problem
as a whole, our model can fully take the advantages
in their correlation. To our best knowledge, we are
the first to tackle graph clustering in a deep prob-
abilistic viewpoint. We perform extensive experi-
ments on both synthetic and real-world networks to
corroborate the effectiveness and efficiency of the
proposed framework.

1 Introduction

Graphs are natural expressions to characterize the complex
interactions between entities, such as social networks, cita-
tion networks, and gene interactions. Revealing the under-
lying structure is of significance to understanding these data.
To this end, graph clustering is proposed to identify groups of
nodes having a higher probability of being connected than to
members of other groups. The graph clustering methods have
shown its potential in many real-world applications, such as
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global air transportation network analysis and protein inter-
action analysis.

As a fundamental unsupervised machine learning prob-
lem, graph clustering, also called community detection, has
attracted considerable research attention in the past few
decades. Traditional algorithms seek to find the cluster struc-
ture based on specific criteria, e.g., modularity, normalized
cut, permanence, and conductance. Among these meth-
ods, nonnegative matrix factorization (NMF) [Kuang et al., ;
Li et al., 2019] and eigenvalue decomposition (EVD) are
widely adopted and various approaches have been derived
from them. They first map a network to embeddings in a
low-dimensional latent space and then identify the structure.
However, these types of embedding are linear [Yang er al.,
2016] which is not only in sharp contrast to the complex rela-
tionship among nodes but also limits the embedding capacity
of the model. What’s more, they represent nodes with de-
terministic embeddings ignoring the uncertainty of the em-
beddings which is inherent in the relationship. For exam-
ple, nodes connecting to multiple clusters, also called hubs,
would be confronted with cluster contradiction between their
neighboring nodes. Such discrepancy should be considered
in the uncertainty of its embedding and clustering. More im-
portantly, the pairwise relationship is the building block of
the graph data. Preserving such property in the embedding
would benefit the clustering task.

On the other hand, deep learning models in numerous ma-
chine learning tasks have achieved state-of-the-art perfor-
mance resulted from learning effective representations in a
non-linear way. As a result, some recent works try to learn
a more powerful embedding by the non-linear mappings.
Instead of learning the mapping in the spectral clustering,
GraphEncoder [Tian et al., 2014] first introduces a sparse au-
toencoder to encoder the similarity matrix, and then does the
k-means in embedding space to learn the clusters. Similarly,
[Sun et al., 2017; Ye et al., 2018] proposes a nonnegative
symmetric encoder-decoder approach to preserve the nonneg-
ative property of embeddings like NMF. Deep nonlinear re-
construction (DNR) [Yang et al., 2016] extends the traditional
modularity based clustering by reconstructing the modularity
matrix with deep autoencoder, which introduces non-linear
mapping in graph clustering. The better performance of these
deep learning model in graph clustering demonstrates the po-
tential of non-linear mappings. However, all of these ap-
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proaches could not learn the uncertainty in the graph and well
preserve the relationships in the embedding space. More im-
portantly, the processing of indicating clusters is not inherent
in the learning model, which leads to a loss of information.

To adequately capture the uncertainty and learn the implicit
relationships in embedding space, the integration of proba-
bilistic graphical models and deep clustering models is tak-
ing into consideration. Probabilistic graphical models are
widely adopted to model the user-item relationships in the
recommendation and generate samples in computer vision.
By modeling each sample as a Gaussian distribution, proba-
bilistic models can not only describe the sample’s noise by
dividing the representation into mean and covariance (i.e.,
the true position and the uncertainty), but also capture the
implicit relationship between samples well. Very recently,
[Jiang et al., 2017; Dilokthanakul et al., 2016] and [Hsu et
al., 2019] explore image generation and text topic model-
ing by combining the Gaussian mixture model (GMM) with
a variational autoencoder (VAE). They propose these gener-
ative clustering models to generate highly realistic samples
from a latent cluster. And the disentanglement of covariance
is to preserve the diversity in generating samples. Despite the
state-of-the-art performance they gain, they are feature-based
approaches dealing with samples in Euclidean space and as-
sume i.i.d. inputs. There is not the case in graph data in
which the non-i.i.d. nature arises from the complex interac-
tions between the nodes. And directly applying these meth-
ods to the graph data in non-Euclidean space will inevitably
impact the performance ignoring the pairwise characteristic
of the graph. Since the structure and influence of neighbor-
hood vary widely by the node, preserving this information
from the graph space to embedding space make a better per-
formance on clustering task possible.

To address the above challenges, we propose a neural vari-
ational model which can compress the node representation as
a Gaussian distribution preserving the pairwise relationship
and cluster the nodes in their generative process simultane-
ously. The model, called variational graph embedding and
clustering with Laplacian Eigenmaps (VGECLE), is formu-
lated as a generative model based on the variational autoen-
coder (VAE) framework with a Mixture-of-Gaussian prior
and a Teacher-Student (T-S) like regularization. In order
to model the pairwise relationship in embedding, under the
Stochastic Gradient Variational Bayes (SGVB) estimator, this
T-S regularization term forces the node (student) to learn a
distribution closer to its neighbors’ one (teacher) with respect
to the similarity. By learning the embedding from each other
at different train batch, we show that it is also the Laplacian
Eigenmaps (LE) [Belkin and Niyogi, 2003] to some extent.
Specifically, our contributions can be summarized as follows:

e We propose a variational autoencoder for graph embed-
ding and clustering, representing each node in the graph
as a Gaussian distribution to disentangle the uncertainty
and the true position of embedding.

e We propose a Teacher-Student mechanism in the
stochastic gradient descent training process, which pre-
serves the pairwise relationship and makes full use of the
graph information.
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e Extensive experiment on real-world datasets has shown
that VGECLE can significantly outperform the state-of-
the-art models.

2 Related Work

In this section, we briefly review the representative works in
graph clustering and the graph embedding technique. The
related works on probabilistic modeling are also included.

Since graph data are ubiquitous and almost feature-based
data can be described by the similarity, a great deal of ef-
fort has been devoted to graph clustering over the past few
decades [Fortunato, 2010]. However, there is no consensus on
the formalization of the graph clustering and a variety of crite-
ria are proposed to evaluate the quality of a network partition,
such as modularity [Newman, 2006], normalized/ratio cut
[Shi and Malik, 20001, permanence [Chakraborty et al., 2014]
and conductance [Leskovec et al., 2010]. Spectral Clustering
(SC) [von Luxburg, 2007] is one of the most widely adopted
approach in graph clustering and various spectral-based ap-
proaches have been developed for graph clustering [Craddock
et al., 2012; Biihler and Hein, 2009]. Readers can refer to
[Fortunato and Hric, 2016; Javed et al., 2018] for more tradi-
tional methods and shallow models. For the deep graph clus-
tering, GraphEncoder [Tian et al., 2014] first investigated the
connection between spectral clustering and autoencoder in
terms of reconstructing the normalized graph similarity ma-
trix. And it runs k-means on the graph embeddings learned by
a sparse autoencoder (SAE) to partition the graph. SAE tries
to compress the information of the node neighbors or a row of
the adjacency matrix into an embedding and reconstruct the
original vector. [Yang et al., 2016] tried to encode the modu-
larity matrix instead of the adjacency matrix to do clustering.
[Sun et al., 2017] proposed a nonnegative encoder-decoder
architecture using the same nonnegative matrix to compress
and reconstruct the neighborhood and cluster nodes with the
nonnegative embeddings. However, all these graph clustering
methods only learn a vector for each node entangled with un-
certainty and restricts the performance in the clustering task.

Graph embedding aims to compress the node representa-
tions to a low-dimensional space meanwhile preserve some
specific properties of the graph, such as the proximity and
node degree. Typical network embedding methods include
DeepWalk [Perozzi et al., 2014], Node2vec [Grover and
Leskovec, 2016] and SDNE [Wang er al., 2016]. DeepWalk
learns embeddings by exploiting the co-occurrence of nodes
in a random walk. SDNE learns embeddings by combin-
ing GraphEncoder with a Laplacian Eigenmaps term to pre-
serve the pairwise relationships. Very recently, Graph2Gauss
[Bojchevski and Giinnemann, 2018] and DVNE [Zhu e? al.,
2018] attempt to use Gaussian distributions to represent a
node to integrate uncertainty and position to embeddings.

Although graph embedding offers an effective way to ob-
tain node representations, it still left the clustering problem
unsolved. Consequently, we have to conduct clustering on the
obtained embedding which does not correspond to the clus-
ter structure of the graph. In this paper, we directly learn the
clusters and the representation is the by-product, without re-
quiring a clustering post-processing step.
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Figure 1: The graphical illustration of the proposed framework
VGECLE. The graph is colored in green, and below is the graph-
ical model of the variables. The generative process of observation
x; is in solid arrow, while the inference of latent variables z; and
c; are in dashed arrow. The middle panel with o, { e, o} is
the global latent learnable parameters of MoG. For the link between
v; and v;, the Teacher-Student (T-S) mechanism is also shown in
dotted arrow: when training the Gaussian embedding for v; colored
in blue, A; is encouraged to learn from its neighbor N colored in
orange. And N also learn from N; when training node v;.

3 Proposed Framework

In this section, we describe the proposed variational graph
embedding and clustering with Laplacian Eigenmap (VGE-
CLE) model. Before diving into the details of the proposed
method, we first summarize the notations used in this pa-
per. Then we present the details of VGECLE. The graphical
model of the VGECLE is shown in Figure 1.

Throughout this paper, we denote scalars, vectors and ma-
trices by lowercase letters, bold lowercase letters and bold
uppercase letters respectively. A graph is denoted as G =
(V,E), where V- = {vy, v, ,v,} is a set of n nodes and
E = {ei;}7;; is a set of edges. Each edge e;; is associated
with a weigﬂt s;5 = 0. Only when v; and v; are not linked
by an edge, s;; = 0. S = {s1, 82, -+, 8, } provides the in-
formation of the neighborhood structure of each node. The
neighborhood of node v; is denoted as N (v;). We aim to par-
tition the graph into K parts, where K is given. We denote
N; = N(pi,0?I) as a low-dimensional Gaussian embed-
ding for node v;, where p;,o; € RP,D <« n and I is the
identity matrix.

Although we focus on the clustering task instead of the
generative task in this model, for better understanding of the
model, we follow the literature in introducing the variants of
VAE with the generative process first and then the inference.
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3.1 Generative Model with Mixture of Gaussian
Prior

Two latent variables c and z are introduced to model the MoG
prior in VAE. Specifically, c is a K-way categorical discrete
variable, named latent mixture-component indicator, and z
is a D-dimensional continuous variable, named latent sam-
ple. Given an observed node v; and neighborhood structure
x = s; € R”, we aim to reconstruct the neighborhood from
the latent variables. The latent variable c first sampled from
its prior p(c), choosing the mixture-component/cluster. And
then the latent sample z is sampled from a conditional distri-
bution p(z|c), choosing a sample from the given component.
Finally, the neighborhood is drawn from p(x|z). Assuming
p(x|z) = p(x|z,c), the joint probability can be factorized
as:

p(x, z,¢) = p(c)p(z|c)p(z|2),
p(c) = Cat(c|a),
p(ele) = N(pse,021), .
p(x|z) = N(pa, 021),
where @ € RX, ZkK:l ar = 1 and Cat(o) is a cate-

gorical distribution. N (., 0?I) is a Gaussian component
with learnable means p. and variances af. As a result, the
marginal distribution of latent variable z is a MoG:

K K
p(z) =Y _pe)p(zle) = > acN(pe, a2I).  (2)

c=1

As aresult, the latent variable c points out the cluster that gen-
erates the targeted neighborhood structure. In other words,
the assignment of the node clustering is done according to
the cluster information accompanied by itself. This good in-
terpretability is inherent in the latent variables of the MoG
model and passed to the nodes in the graph. The distribution
of @ is learned by a deep neural network (DNN) fy(z) which
is parametrized by 6 and fo(z) = [p., o2].

3.2 Variational Inference

Following the VAE framework [Kingma and Welling, 2013],
to maximize the likelihood of the given data points is equal to
maximizing its evidence lower bound (ELBO) with an infer-
ence model:

Lerpo(x) :=logp(x) — Dxrle(z, clz)l|p(z, c[z)]

—E (s o g p(2]2)] — Dicrla(z,cl)lp(z, )] O

where ¢(z, c|x) is the inference model for approximating the
intractable posterior p(z,c|x). We assume the mean-field
variational family ¢(z, c|x) can be factorized as ¢(z, c|x) =
q(z|x)q(c|x). The approximated posterior is a Gaussian dis-
tribution N (e, o’ﬁI ), where the mean g, and variance o,
are also learned by a DNN g, (z) = [p,02]. The Gaussian
embedding of node v; is the learned approximated posterior
N; = q(z|z;) = N(go(x;)). As for inferencing the mixture-
component/clustering assignment, we can approximate it in a
more elegant way instead of introducing another DNN. Since
q(c|x) is an approximation of the true posterior p(c|x), we
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can achieve it by assuming p(c|z) = p(c|z, x):

p(clx) = | p(cz)p(z|x)dz
/z @)
~ / p(el2)a(z|z)dz = g(c|x)

where p(c|z) is the membership-weights of z in MoG and
has a closed-form solution:

p(e)p(zc)
Yo p()p(z]e)
exp (—%(z — uc)To'c_l/2I(z — uc))
G PPl

To sum up, we compress the graph nodes to the latent clus-
ter and the latent distribution by variational inference DNN
9o (+), and reconstruct the graph nodes from this latent in-
formation by generative DNN fy(-). We also call g4(-) as
an Encoder transforming the neighborhood structure s; into
a low-dimensional code A;, which is a Gaussian distribu-
tion. Accordingly, fy(-) is the Decoder interpreting the latent
code/distribution N; to reconstruct the neighborhood struc-
ture x = s;.

Similar to VAE, the ELBO can be optimized by using
SGVB estimator and reparameterization trick [Kingma and
Welling, 2013].

p(clz) =
&)

p(z[e) =

LELBO(:BZ') :Eq(z,c|mi)[logp(a:i|z)] - DKL(q(Clwi)Hp(C))
— Eq(cla) [PrL (q(2]:)|Ip(2]0))]

L

1

=7 > log po(@i|zi1) — Drcr(alcla:)||p(c))
1=1
= Ey(een) [Pk (q(2]2i)||p(2]c))],
(6)

where L is the number of Monte Carlo samples in evaluation,
zig=pi+0; ©e€ and g ~ N(0,I).

3.3 Teacher-Student Mechanism

To improve the clustering performance of Gaussian embed-
dings and learn the pairwise relationships in the graph, we
propose a Teacher-Student mechanism which can effectively
distill information from graph space to embedding space. In-
tuitively, nodes in the same cluster would be more likely to
have stronger relationships than that in other clusters. It is
natural to get nodes closer in the embedding space if they are
linked by an edge. However, in a stochastic gradient descent
optimization scenario, the goal of updating all the non-i.i.d.
node embeddings at the same time is hard to reach. Therefore,
from the point of view of a single node, a node ought to seek
the guidance information from its neighbors to learn a bet-
ter Gaussian embedding for itself. We recruit the neighbors’
Gaussian embeddings as teachers to provide information for
learning. Specifically, the loss function for node v; to reach
this goal is defined as follows:

Y DuNLAG) (7)

v; €N (vy)
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where D, (N;, N;) measures the distance between two distri-
butions and here we adopt KL divergence from N to N; as
the VAEs usually do. For the weighted graph, it is reasonable
for student to pay more attentions to the teachers whom have
a tighter connection to the student in its learning process.

Z $ij Dk (NG, Nj). 3

v; EN (v4)

Lr_s(x;) =

All in all, we formulate the objective function of VGECLE
for a single node v; as:

L(x;) = Lo (i) — BLr_s(x;) )

where 3 is for balancing the trade-off between reconstruction
loss and the pairwise relationship.

Next, we will show the relationship between the Teacher-
Student mechanism and the Laplacian Eigenmaps (LE)
[Belkin and Niyogi, 2003]. In training with stochastic gra-
dient descent, the gradient is back-propagate to optimize the
loss of a single node. While training with gradient, the model
will update the loss of the whole graph. In that case, the
Teacher-Student term will be formulated as follows:

> sy Drr(Ni,NG). (10)

i,j\e,;jeE

While the objective function in LE adopts /-2 Norm to mea-
sure the difference between vectors instead of distributions:

> siillyi —wl (11
i,jlei;€EE
However, it is unpractical for VGECLE to optimize the whole
graph with gradient descent, especially when dealing with the
large-scale graphs.

4 Experiments

In this section, we use four benchmark real-world datasets to
demonstrate the effectiveness of VGECLE. We provide quan-
titative comparisons of VGECLE with other state-of-the-art
clustering methods in two categories: shallow models and
deep learning models. The experimental results show signifi-
cant improvements with respect to the baselines.

4.1 Baseline Methods

To evaluate the performance of our proposed VGECLE, we
compared it with the following five baseline methods. To
validate the effectiveness of deep models in graph cluster-
ing, two shallow approaches are used for comparison, i.e.,
k-means and Spectral Clustering. VGECLE also compares
to a deep graph clustering method GraphEncoder, a represen-
tative embedding method based on autoencoder SDNE, and
a variational feature-based clustering method VaDE. The de-
tailed descriptions of these methods are listed as follows.

e k-means: This algorithm aims to partition n observa-
tions into k clusters. It assigns each observation to the
cluster with the minimal distance to the others. We run
the k-means algorithm taking the neighborhood struc-
ture as representation.
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Datasets Nodes Edges Classes
Cora 2708 5429 7
BlogCatalog 5196 171743 6
Flickrl 7564 239365 9
Flickr2 80513 5899882 195

Table 1: Datasets statistics

e Spectral Clustering [von Luxburg, 2007]: This algo-
rithm makes use of the spectrum of the similarity ma-
trix of the data to perform dimensionality reduction. It
performs k-means on the learned eigenvector-based so-
lutions.

e GraphEncoder [Tian et al., 2014]: This method learns
a nonlinear embedding of the original graph by sparse
autoencoder, and then runs the k-means algorithm on the
embedding to obtain a clustering result.

e SDNE [Wang et al., 2016]: SDNE try to preserve the
first and second order proximity to the embeddings. It
learns a point-vector for each node using a deep autoen-
coder with LE regularization. We run k-means on the
deterministic embeddings to acquire the clustering as-
signments.

e VaDE [Jiang er al., 2017]: VaDE is one of the rep-
resentative feature-based variational clustering methods
adopting a Mixture of Gaussian as the prior in VAE.
We evaluate the effectiveness of the proposed Teacher-
Student mechanism.

4.2 Datasets

To evaluate the effectiveness and efficiency of the proposed
framework, we employ three networked datasets: Cora, Blog-
Catalog, and Flickr. All the networks are publicly available,
and also undirected. The statistics of the datasets are sum-
marized in Table 1. The detailed information is shown as
follows:

e Cora: This network represents the citation relation-
ships between scientific publications, which consists of
2708 scientific publications classified into one of seven
classes.

o BlogCatalog: Itis a blogger community. The network is
formed according to the interaction between users. The
labels represent the topic categories provided by the au-
thors. Those users without a predefined category have
been removed. There are 6 different categories.

e Flickr: It is an online platform where people can share
photos. Photographers can follow each other and form a
network. The labels represent the interest groups of the
users. There are overall 9 different categories for Flickrl
and 195 categories for Flickr2.

4.3 Evaluation Metric

In our experiment, we perform the task of clustering. We
use the unsupervised clustering accuracy (ACC) to measure
the performance of VGECLE. This metric is widely used in
unsupervised learning scenario.
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Method Cora Blog Flickrl Flickr2
k-means 31.57 2696 13.03 \
Spectral Clustering  32.23 27.13  14.37 \
GraphEncoder 3290 27.68 17.14 15.23
SDNE + k-means 3292 30.12 2033 15.95
VaDE 3322 3334 2641 25.41
VGECLE 34.67 35.61 2839  27.53

Table 2: Clustering results (ACC%)

e ACC: For the node v;, ¢; is the clustering result from
the algorithm, and [; is the ground-truth label. Then the
ACC is defined as:

ACC = max Zi:l 1(l'L = m(Ci))
meM

12)
n

where n is the total number of nodes, and m is the op-
timal mapping function in mapping set M that can be
computed by employing the KuhnMunkres algorithm.
The higher the ACC value, the better the clustering per-
formance.

4.4 Implementation

In the unsupervised clustering scenario, we are not capable of
determining network structure by cross-validation on a vali-
dation set. And for a fair comparison, we use the same net-
work architectures in all the deep learning models. So we set
the network dimensions to input — 500 — 100 — D, where
input is the dimension of adjacency vector aka n. As men-
tioned in [Kingma and Salimans, 2016], VAE-based models
suffer from the reconstructed problem. The reconstruction
term in ELBO is too weak to play a part at the beginning of
training. Thus, pretraining is necessary. We use the autoen-
coder to pretrain the network and initialize the parameters for
the deep models. The learning rate for Cora, BlogCatalog and
Flickr2 is 0.01 and decreases every 100 epochs with a decay
rate of 0.9. And The learning rate for Flickrl is 0.001 and
decreases every 100 epochs with a decay rate of 0.9. For all
baseline algorithms, we simply run them 10 times and obtain
the average performance.

4.5 Experiment Results

The clustering results on four datasets are summarized in Ta-
ble 2. For an overview, our proposed method achieves much
better clustering performances than others on each dataset.
From the results, all the deep learning methods outperform
the shallow models in all datasets. Especially, the difference
between Spectral Cluster and GraphEncoder in experiment
and methodology analysis show that deep structures can help
to obtain better representation and improve the performance
in clustering. Furthermore, the deep probabilistic models, i.e.
VaDE and VGECLE, also give a better results in almost all
comparisons, which demonstrates the advantage of disentan-
gling the position and the uncertainty in learning the embed-
dings. Taking the embedding and clustering as an integral
task in learning is also superior to the two-stage learning e.g.,
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Inner Cross SNR  k-means GraphEncoder VaDE VGECLE
250 0 20214 3942 30.92 44.14 45.70
150 0 12352 28.32 29.80 40.44 42.68

0 0 0.6794  26.96 27.68 33.34 35.61
0 60 04540 25.84 26.42 31.09 32.92
0 100 0.2957  24.00 24.04 30.88 32.24

Table 3: Accuracy(%) under different SNRs by appending edges inner clusters and cross clusters

SDNE first, then k-means. Compared with VaDE, the im-
provement of VGECLE validates the effectiveness of the pro-
posed Teacher-Student mechanism and the importance of the
pairwise relationship in graph clustering.

Our proposed method compresses the node representation
as a Gaussian distribution while preserving the proximity of
the neighborhood. It can be seen that VGECLE achieves
ACC of 34.67%, 35.61%, 28.39% and 27.53% on Cora, Blog-
Catalog, Flickrl, Flickr2 respectively.

4.6 Effectiveness Analysis

In order to demonstrate the effectiveness of our proposed
VGECLE, we design an experiment running on the BlogCat-
alog dataset. Specifically, we conducted five sets of exper-
iments on graphs under different signal-to-noise ratios. We
add edges inner clusters and cross clusters to adjust the ra-
tios. The result is presented in Table 3. From the results, we
have the following observations and analysis.

The results show that our proposed method achieves better
performances than others. It demonstrates that our method is
able to learn the complicated distribution of the dataset better.
Although VGECLE and VaDE both adopt a Mixture of Gaus-
sian as the prior in VAE, VGECLE outperforms the VaDE
by 2% on average. This result testifies the effectiveness of
the proposed Teacher-Student mechanism. And the pairwise
relationship plays an important role in the graph clustering.
And then we can see that our proposed VGECLE outperforms
the GraphEncoder(GE) by 8% on average. Without taking the
graph uncertainty into account, GraphEncoder is inferior to
both VGECLE and VaDE in the performance

4.7 Parameter Sensitivity

In this part, we investigate how the different dimensions D
of the Gaussian embedding and the different hyper-parameter
[ values affect the performances. Specifically, we run our
approach on the BlogCatalog dataset.

As shown in Figure 2(a), we can see that the dimension
of the Gaussian embedding affects the performance in ACC.
With the increase of D value from 5 to 10, the performance
raises. However, when the number of dimensions continu-
ously increases, the performance is in a declining trend and
fluctuates within a range and less than 0.34. The reason is
that when the D value is too low, it could not capture enough
structure information of the graph. While the number of di-
mensions is too large, it may contain more noise, leading to
poor performance. It is essential to determine the appropriate
number of Gaussian embedding dimensions. Therefore, we
set the dimension of the embeddings to 10 in all experiments.

0.38 0.38
0.36 - BlogCatalog 0.36 ~e- BlogCatalog
361, . —
/ :
5,034 5,034 L
© 0.32 S ©0.32
3 3
g8 0.30 80.30
<028 <028
0.26 0.26
02490750 75 100 125 150 0245 1 2 3
Dimension beta...(1e-4)
(@) D () B

Figure 2: The dimensions D of embedding and the value of 5.

As for the parameter 3, it is for balancing the trade-off be-
tween reconstruction loss and the pairwise relationship. Then
we show how the value of g affects the clustering results in
Figure 2(b) with fixed embedding dimension D = 10. When
B = 0, the pairwise relationship in the graph is ignored and
VGECLE is replaced by VaDE. The larger the 5, the better
the performance of VGECLE. Therefore, the pairwise rela-
tionship is important for VGECLE. We can see that the per-
formance of 5 = 0.0001 is better than the others.

5 Conclusion

In this paper, we propose a novel probabilistic deep graph
clustering framework VGECLE. Unlike the other methods in
deep graph clustering, we disentangle the position and uncer-
tainty of the graph node by representing each node as a Gaus-
sian distribution. And we propose a Teacher-Student mecha-
nism to preserve the pairwise relationship in the graph space
to the Gaussian embeddings space. It offers an interpretable
clustering assignment which is learned by the variational in-
ference with a Mixture of Gaussian prior. We compared the
clustering performance of VGECLE with baselines on 4 real-
world datasets, and the experiment results show that VGE-
CLE outperforms the other methods. Also, we conduct 5 sets
of experiments on graphs under different signal-to-noise ra-
tios to testify the effectiveness of VGECLE.
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